SHORT PAPER

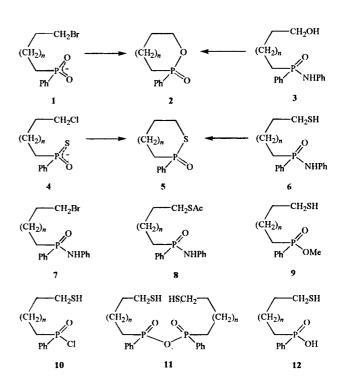
Acid catalysed reactions of ω-mercaptoalkylphosphinic anilides: reluctance of the thiol group to participate in displacement of the aniline moiety[†]

Martin J. P. Harger

Department of Chemistry, The University, Leicester, LE1 7RH, UK

Acid catalysed cyclisation occurs readily with $HO(CH_2)_{n+3}P(O)(NHPh)Ph$ (n = 0 or 1) in MeOH but only acyclic $HS(CH_2)_{n+3}P(O)(OMe)Ph$ is obtained when $HS(CH_2)_{n+3}P(O)(NHPh)Ph$ (n = 0 or 1) is treated with HCl in $CDCI_3$ containing 1% MeOH; cyclisation can occur if MeOH is excluded completely but even the five-membered cyclic thiophosphinate **5** (n = 0) is not formed readily.

Five-membered rings are generally formed much more readily than six in cyclisations $(k^5/k^6 \sim 10^2)^1$ but that may not be the case when the products are cyclic P=O compounds,² e.g. the ω -bromo-phosphinate **1** (n = 0 or 1) undergoes intramolecular nucleophilic substitution only 4.3 times faster when n = 0 than when $n = 1.^3$ Unusually severe ring strain in the product 2 (n = 0) could be to blame and the behaviour of the thiophosphinate 4 (n = 0 or 1) may be significant: reduced strain is likely when the ring contains a S atom⁴ and now there is a 30-fold difference in the rates of formation of 5 (n = 0) and 5 (n = 1).³ On the other hand, a large rate difference $(k^5/k^6 = 70)$ in CHCl₂, 50 in MeOH) has also been observed in the acid catalysed cyclisation of the hydroxy phosphinic anilide 3 (n = 0 or 1), even though the product is again the phosphinate 2 with oxygen in the ring.⁵ By examining the mercapto anilide 6 we hoped to learn more about k^{5}/k^{6} rate ratios and the factors that determine them.


The ω -bromo anilides **7** $(n = 0, 1)^5$ were converted into the thiol acetates **8** $(v_{C=0} \sim 1680 \text{ cm}^{-1})$ using CH₃COSH–Et₃N. Deacetylation with NaOMe afforded the ω -mercapto anilides **6** (n = 0, 1) as reasonably stable crystalline solids. Triplets $\delta_{\rm H}$ 1.2–1.3 $(J_{\rm HH}$ 8), exchangeable with D₂O, confirmed the presence of CH₂SH groups.

In MeOH containing 0.1 mol dm⁻³ HBF₄ the mercapto anilides 6 gave only the acyclic phosphinates 9 (n = 0 or 1) $(\geq 95 \%)$ resulting from methanolysis of the P–N bond; no trace of the cyclic thiophosphinates **5** (n = 0 or 1) ($\leq 1\%$) was found by NMR or GLC (comparison with authentic samples³). Monitoring by ^{31}P NMR (δ_{P} 34 \rightarrow 50) indicated half lives of 64 and 55 min at 20 °C [$k = 1.8 \times 10^{-4}$ (n = 0) and 2.1×10^{-4} s⁻¹]. The mercapto compounds are therefore similar in reactivity to the bromo anilide 7 (n = 1) ($t_{1/2}$ 51 min),⁵ which cannot cyclise, and much less reactive than the hydroxy compounds **3** (n = 0, 1) ($t_{1/2}$ 0.02 and 0.95 min), which give almost entirely the cyclic phosphinates 2 (\geq 98 %).⁵ The difference in reactivity when n = 0 is 3200 and ≤ 1 % of the reaction of the mercapto compound involves cyclisation; the SH group is therefore at least 3×10^5 less effective than the OH group in intramolecular nucleophilic attack. We had expected a substantial difference (P=O is a hard centre) but not one as great as this.

So that intramolecular attack might compete more effectively the reaction medium was changed to CDCl_3 containing just 1% MeOH. Also, because CDCl_3 -insoluble complexes (salts) were formed with HBF₄, the acid was changed to HCl (~ 0.1 mol dm⁻³). For each of the mercapto compounds **6** (*n* = 0, 1) the reaction mixture after 10 min at 25 °C was a

mixture (~ 1:1:2) of starting material (δ_p 46), the phosphinic chloride **10** (δ_p 58) (identity not proven), and the methanolysis product **9** (δ_p 53.5). Only the last of these remained after 50 min, together with a little of the phosphinic acid **12** (~ 5 %) resulting from unavoidable traces of moisture. Closer examination (NMR, GLC) revealed a very small amount of the fivemembered cyclic thiophosphinate **5** (n = 0) (2 %) but not a trace of the six-membered analogue. Even with a very low concentration of MeOH attack by the SH group can hardly compete.

With MeOH excluded completely, the mercapto anilides **6** (n = 0, 1) were unchanged after 48 h in CDCl₃ containing 0.02 mol dm⁻³ CF₃CO₂H whereas the hydroxy compounds **3** (n = 0, 1) cyclised rapidly $(t_{1/2} \ 0.1 \ and \ 7.5 \ min \ at \ 20 \ ^{\circ}C)$.⁵ The dramatic difference in reactivity between SH and OH groups is again in evidence here. Using HCl (~ 0.1 mol dm⁻³) in CDCl₃ the mercapto compounds formed the phosphinic chlorides **10** (n = 0, 1) $(t_{1/2} \ -0.5 \ h \ at \ 25 \ ^{\circ}C)$ and these then reacted further. With n = 0 reaction was complete in 21 h at 37 $\ ^{\circ}C$ giving a 4:1 mixture of the cyclic thiophosphinate **5** (n = 0) $(\delta_{\rm p} \ 75.5)$ and the hydrolysis product **12**. At 60 % completion $(t = 2.1 \ h)$ there was evidence of some of the phosphinic anhydride **11** [meso and (±)] corresponding to partial hydrolysis [$\delta_{\rm p} \ -42$; 2 peaks each 7–8 % of the total phosphorus] but

[†] This is a Short Paper, there is therefore no corresponding material in *J Chem. Research* (M).

intramolecular attack by the SH group would convert this into **5** and **12**. With n = 1 the phosphinic chloride was more persistent and still accounted for 70 % of the total phosphorus after 21 h. The products were the acid **12** and anhydride **11** although later on (70% completion) a small amount of the cyclic thiophosphinate **5** (n = 1) (2 %) (δ_p 45.6) could be detected (¹H NMR, GLC). In the time taken for **10** (n = 0) to be 80 % converted into the cyclic product **5** (n = 0) not more than 1% of **10** (n = 1) reacts by cyclisation. The k^5/k^6 ratio thus seems to be ~10², in line with cyclisations generally, but because of the very low nucleophilicity of the SH group towards the hard P=O centre, and the high nucleophilicity of H₂O, we cannot be precise.

This result, together with that for the hydroxy anilides **3** suggests that small k^5/k^6 ratios are confined to cyclisations in which the P=O group is part of the nucleophile and the phosphorus atom retains its tetrahedral geometry in the transition state. When it is the P=O group that is being attacked, and the phosphorus atom becomes trigonal-bipyramidal in the cyclic intermediate or transition state, normal k^5/k^6 ratios (~10²) are seen. We have previously considered why this might be,⁵ but our ideas are still no more than speculation.

Experimental

¹H NMR spectra were recorded at 250 MHz (Me₄Si internal standard; *J* in Hz) and ³¹P NMR spectra at 101 or 121 MHz (positive δ_P downfield from 85 % H₃PO₄). Mass spectra were obtained with Kratos Concept or Micromass Quattro LC spectrometers. GLC analyses employed a 15 m × 0.53 mm column coated with OV 1701 (1 µm film) (He carrier, 16 ml min⁻¹). Methanol was distilled from the Mg salt and CHCl₃ was dried over molecular sieve.

Acetylthioaľkyl(phenyl)phosphinic anilides **8**: The bromo anilide **7** (n = 0 or 1)⁵ (1.0 mmol) was stirred with AcSH (152 mg, 2.0 mmol) and Et₃N (212 mg, 2.1 mmol) in CHCl₃ (3.6 ml) (N₂ atmosphere) at 30 °C for 3 h ($\delta_{\rm H}$ 3.5–3.2 replaced by 3.0–2.75). The mixture was diluted (CHCl₃, 25 ml) and washed with water (5×25 ml). Crystallisation from CHCl₃–light petroleum (bp 60–80 °C) gave the thiol acetate **8** (n = 0) (85 %), m.p. 138.5–140.5 °C; m/z 333 (M⁺, 6%), 290 (M⁺–Ac, 20), 93 (95) and 77 (100); $\delta_{\rm p}$ (CDCl₃) 28.0; $\delta_{\rm H}$ (CDCl₃) 7.9–7.4 (5 H), 7.2–6.85 (5 H), 5.65 (1 H, d, $J_{\rm PH}$ 10, NH), 2.91 (2 H, m CH₂SAc), 2.31 (3 H, s, SAc) and 2.25–1.7 (4 H); v_{max} (Nujol)/cm⁻¹ 3200 (NH) and 1685 (C=O) (Found: C, 61.0; H, 6.1; N, 4.2. C₁₇H₂₀NO₂PS requires C, 61.2; H, 6.05; N, 4.2 %) or **8** (n = 1) (85%), m.p. 97–98 °C; m/z 347 (M⁺, 8%), 304 (M⁺–Ac, 25), 93 (100) and 77 (55); $\delta_{\rm p}$ (CDCl₃) 28.3; $\delta_{\rm H}$ (CDCl₃) 7.9–7.4 (5 H), 7.2–6.8 (5 H), 5.66 (1 H, d, $J_{\rm PH}$ 10, NH), 2.81 (2 H, m, CH₂SAc), 2.32 (3 H, s, SAc), 2.2–1.9 (2 H) and 1.75–1.55 (4 H); v_{max} (Nujol)/cm⁻¹ 3240 (NH) and 1680 (C=O) (Found: M⁺ 347.11085. C₁₈H₂₂NO₂PS requires M, 347.1109).

Mercaptoalkyl(phenyl)phosphinic anilides **6**: The thiol acetate **8** (*n* = 0 or 1) (0.35 mmol) was dissolved in MeOH (N₂-flushed) (2.8 ml) containing NaOMe (0.7 mmol). After 10 min reaction was quenched (NH₄Cl; 1.2 mmol), most of the solvent was removed, and water was added to precipitate the product. Recrystallisation from CHCl₃–light petroleum afforded the mercapto anilide **6** (*n* = 0) (96 %), m. p. 128–130 °C; *ml* 291 (M⁺, 80 %), 258 (M⁺–SH, 15), 244 (M⁺–CH₂SH, 90) and 230 (M⁺–C₃H₄SH, 100); δ_p (CDCl₃) 28.2; δ_H (CDCl₃) 7.9–7.4 (5 H), 7.2–6.9 (5 H), 5.55 (1 H, d, J_{pH} 10, NH), 2.54 (2 H, dt, J_{HH} ~8, 8; collapses to t with D₂O; CH₂SH), 2.3–1.7 (4 H) and 1.27 (1 H, t, J_{HH} 8; exchanges with D₂O; SH); v_{max} (Nujol)/cm⁻¹ 3210 (NH) (Found: C, 61.2; H, 6.1; N, 4.8; M⁺ 291.08465. C₁₅H₁₈NOPS requires C, 61.8; H, 6.2; N, 4.8 %; *M* 291.0847) or **6** (*n* = 1) (85 %), mp 144–146 °C; *ml* 2 305 (M⁺, 20 %), 272 (M⁺–SH, 35), 217 (M⁺–C4_HS, 80), 216 (M⁺–C4_HSH, 20) and 93 (100); δ_p (CDCl₃) 28.2; δ_H (CDCl₃) 7.9–7.35 (5 H), 7.2–6.85 (5 H), 5.54 (1 H, d, J_{pH} 10, NH), 2.43 (2 H, dt, J_{HH} ~7, 8; collapses to t with D₂O; CH₂SH), 2.2–1.9 (2 H), 1.8–1.5 (4 H) and 1.25 (1 H, t, J_{HH} 8;

exchanges with D₂O; SH); v_{max} (Nujol)/cm⁻¹ 3190 (NH) (Found: C, 62.3; H, 6.5; N, 4.5; M⁺ 305.1003. C₁₆H₂₀NOPS requires C, 62.9; H, 6.6; N, 4.6 %; *M* 305.1003).

Reactions of mercaptoalkyl(phenyl)phosphinic anilides 6: (a) A solution of 6 (n = 0 or 1) (3 mg) in MeOH (0.5 ml) containing HBF₄·Et₂O (0.10 mol dm⁻³) was maintained at 20 ± 1 °C and the ³¹P NMR spectrum was recorded at intervals [$\delta_p 33.5 \rightarrow 50 \ (n = 0)$ or 34 \rightarrow 50.5 (n = 1]; 9 spectra were obtained during 2.5–3 h (> 90 % completion) and the fraction of unchanged substrate in each was deduced from the integral. First order plots were reasonably linear and from them the values of $k (\pm 10 \%)$ were deduced. On completion NaHCO₂ (small excess) was added, the solvent was evaporated, and the residue was partitioned between CH₂Cl₂ and very dilute aqueous HCl. The organic portion afforded the methyl phosphonate **9** (n = 0), $t_{\rm R}$ 3.4 min at 180 °C; m/z 230 (M⁺, 40 %), 197 (M⁺–SH, 15), 183 (M⁺–CH₂SH, 100), 170 (M⁺–C₂H₄S, 60) and 169 (M⁺–C₂H₄SH, 80); $\delta_{\rm p}$ (CDCl₃) 45.6; $\delta_{\rm H}$ (CDCl₃) 7.85–7.45 (5 H), 3.63 (3 H, d, $J_{\rm PH}$ 10, OMe), 2.58 (2 H, dt, J_{HH} 7, 8), 2.15–1.75 (4 H) and 1.30 (1 H, t, J_{HH} 8, SH) (Found: M⁺, 230.0530. C₁₀H₁₅O₂PS requires *M*, 230.0530) or **9** (*n* = 1), *t*_R 5.0 min at 180 °C; *m/z* 244 (M⁺, 30 %), 211 (M⁺-SH, 35) 197 (M⁺–CH₂SH, 15), 156 (M⁺–C₄H₈S, 100) and 155 (M⁺–C₄H₈SH, 80); $\delta_{\rm p}$ (CDCI₃) 45.8; $\delta_{\rm H}$ (CDCI₃) 7.85–7.45 (5 H), 3.62 (3 H, d, $J_{\rm PH}$ 10, OMe), 2.49 (2 H, dt, $J_{\rm HH} \sim 7, 8$), 2.05–1.8 (2 H), 1.8–1.6 (4 H) and 1.30 (1 H, t, J_{HH} 8, SH) (Found: M⁺, 244.0688. C₁₁H₁₇O₂PS requires *M*, 244.0687). GLC showed no trace (≤ 1 %) of the cyclic thiophosphinates 5 (n = 0, 1) (authentic samples³ both $t_{\rm R}$ 7.1 min at 180 °C).

(b) A gentle stream of HCl was passed through CDCl₃ containing MeOH (0.25 mol dm⁻³) for 5 min and the anilide **6** (n = 0 or 1) (4 mg) was dissolved in the resulting solution (ca 0.1 mol dm⁻³ HCl) (0.5 ml). Conversion into the methyl phosphinate **9** (n = 0 or 1) (δ_p 46.1 or 46.6 \rightarrow 53.3 or 53.8) was complete in 50 min (T ~ 20 °C). An intermediate (δ_p 57.9 or 58.1) was deemed to be the phosphinic chloride **10** (n = 0 or 1). A highfield shoulder (\sim 5 %) on the phosphinate signal shifted 25 ppm upfield when Et₃N was added, suggesting the phosphinic acid **12** (n = 0 or 1) [m/z (ES) 215 or 229 (M–H)⁻]. In one case (n = 0) a small amount of the cyclic thiophosphinate **5** (2 %) was observed [δ_p 73.3; GLC; m/z (ES) 199 (M+H)⁺].

(c) The anilide **6** (n = 0 or 1) (8 mg) in CDCl₃ (0.5 ml) containing HCl (ca 0.1 mol dm⁻³) was maintained at 25–30 °C until much had been converted into the phosphinic chloride **10** (\sim 2 h). The temperature was increased to 37 °C and ³¹P NMR spectroscopy was used to follow changes in the relative amounts of **10** (n = 0 or 1) (δ_p 55.5 or 56.2) and the phosphinic anhydride **11** (diastereoisomers; δ_p 42.4, 41.9 or 43.1, 42.7), the phosphinic acid **12** (δ_p 48.5 or 51.5), and the cyclic thiophosphinate **5** (δ_p 75.5 or 45.6). The identity of the phosphinic acid was confirmed by conversion (CH₂N₂) into the methyl phosphinate **9** (n = 0 or 1), spectra as in (a). The cyclic thiophosphinate **5** (n = 0) was isolated and characterised by comparison (GLC, MS, ¹H NMR) with an authentic sample.³ A very small amount of **5** (n = 1) was evident in the ¹H NMR spectrum of the reaction mixture [characteristic multiplets δ_H 3.5 and 3.0 (CH₂SP)] and was confirmed by GLC and by enhancement of the signal δ_p 45.6 on addition of authentic material.³

Received 16 February 2000; accepted 4 June 2000 Paper 99/193

References

- C.J.M. Stirling, *Tetrahedron*, 1985, **41**, 1631; M.A. Casadei, C. Galli and L. Mandolini, *J. Am. Chem. Soc.*, 1984, **106**, 1051; D.F. DeTar and N.P. Luthra, *J. Am. Chem. Soc.*, 1980, **102**, 4504, and references cited therein.
- 2 Y.-K. Li and L.D. Byers, J. Chem. Res. (S), 1993, 26.
- 3 A. Chaudhry, M.J.P. Harger, P. Shuff and A. Thompson, J. Chem. Soc., Perkin Trans. 1, 1999, 1347.
- 4 A.S. Pell and G. Pilcher, Trans. Faraday Soc., 1965, 61, 71.
- 5 S. Collison and M.J.P. Harger, J. Chem. Res. (S), 2000, 28.